Numerical Diffusion Control of a Space-Time Discontinuous Galerkin Method
نویسندگان
چکیده
Variations on space-time Discontinuous Galerkin (STDG) discretization associated to Runge-Kutta schemes are developed. These new schemes while keeping the original scheme order can improve accuracy and stability. Numerical analysis is made on academic test cases and efficiency of these schemes are shown on propagating pressure waves. AMS subject classifications: 52B10, 65D18, 68U05, 68U07
منابع مشابه
Space-Time Discontinuous Galerkin Methods for Optimal Control Problems Governed by Time Dependent Diffusion-Convection-Reaction Equations
In this paper, space-time discontinuous Galerkin finite element method for distributed optimal control problems governed by unsteady diffusion-convectionreaction equation without control constraints is studied. Time discretization is performed by discontinuous Galerkin method with piecewise constant and linear polynomials, while symmetric interior penalty Galerkin with upwinding is used for spa...
متن کاملLocal discontinuous Galerkin method for distributed-order time and space-fractional convection-diffusion and Schrödinger type equations
Fractional partial differential equations with distributed-order fractional derivatives describe some important physical phenomena. In this paper, we propose a local discontinuous Galerkin (LDG) method for the distributedorder time and Riesz space fractional convection-diffusion and Schrödinger type equations. We prove stability and optimal order of convergence O(h + (∆t) θ 2 + θ) for the distr...
متن کاملOn the geometric properties of the semi-Lagrangian discontinuous Galerkin scheme for the Vlasov-Poisson equation
The semi-Lagrangian discontinuous Galerkin method, coupled with a splitting approach in time, has recently been introduced for the Vlasov–Poisson equation. Since these methods are conservative, local in space, and able to limit numerical diffusion, they are considered a promising alternative to more traditional semi-Lagrangian schemes. In this paper we study the conservation of important invari...
متن کاملA Framework for Robust A Posteriori Error Control in Unsteady Nonlinear Advection-Diffusion Problems
We derive a framework for a posteriori error estimates in unsteady, nonlinear, possibly degenerate, advection-diffusion problems. Our estimators are based on a space-time equilibrated flux reconstruction and are locally computable. They are derived for the error measured in a space-time mesh-dependent dual norm stemming from the problem and meshes at hand augmented by a jump seminorm measuring ...
متن کاملEntropy stability and well-balancedness of space-time DG for the shallow water equations with bottom topography
We describe a shock-capturing streamline diffusion space-time discontinuous Galerkin (DG) method to discretize the shallow water equations with variable bottom topography. This method, based on the entropy variables as degrees of freedom, is shown to be energy stable as well as well-balanced with respect to the lake at rest steady state. We present numerical experiments illustrating the numeric...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008